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Image Reconstruction from Finite Projections 
with Geometry Transfer 

Ani Sunny, Meenu Varghese 
 

Abstract— This paper proposes a method of image reconstruction using the concept of geometry transfer of the image with discrete 
paired transform combined with radon transform. It is based on the fact that the integral geometry of the image can be transferred from the 
image plane to Cartesian lattice. This is achieved by converting the line integrals obtained from the image and converting them to line 
sums of the corresponding discrete image. Radon transform is combined with paired transform to obtain exact reconstruction with finite 
number of images. This is an effective and improved method. The number of calculations required is reduced as the number of projections 
is limited and the reconstruction is exact. This method provides exact reconstruction even when the projections are noisy. 

Index Terms—analytical reconstruction, discrete paired transform, geometry transfer, radon transform,tomographic imaging .   

——————————      —————————— 

1 INTRODUCTION                                                                     
mage reconstruction has numerous applications in the 

real world, most of which are in the field of medical image 
processing. The reconstruction of images during various 

scans like CT, PET etc. is the most useful implementation do-
main of the reconstruction process. Other applications might 
be graphics designing, multimedia applications etc. 

There are many existing methods of image reconstruction 
that are either iterative or analytical. The proposed method is 
an analytical method in which the main concepts involved are: 
geometry transfer of images from the integral geometry to 
Cartesian lattice[1]; the use of discrete paired transform that 
reduces the redundancy of projections and provides partial 
reconstruction[1][2]; Radon transform[3]. Radon transform 
usually requires infinite number of projections for exact image 
reconstruction, but with the combination of geometry transfer 
and paired transform exact reconstruction is possible even 
though the number of projections is limited. 

The proposed method is an efficient method for image re-
construction. The geometry transfer accounts for easy calcula-
tions. Paired transform removes similar projection and hence 
eliminate redundancy. Radon transform provides the radon 
projection. The inverse of these transforms provides the recon-
structed image. The inverse transforms are averaged and 
combined to provide the reconstructed image.  

The remainder of this paper is organized as follows: Sec-
tion II lays down the existing methods, Section III describes 
the proposed method, Section IV has the Results of different 
experiments, Section V gives the conclusion followed by the 
acknowledgement and references. 

 

2 EXISTING WORK 
There has been substantial research in the field of image 

reconstruction and different methods have been proposed at 
different times. The image reconstruction methods can be 
mainly categorized into two types: iterative method; and ana-
lytical method[8][9]. The analytical reconstruction approaches, 
in general, try to formulate the solution in a closed-form equa-
tion. Iterative reconstruction tries to formulate the final result 
as the solution either to a set of equations or the solution of an 
optimization problem, which is solved in an iterative fashion. 
Analytical reconstruction is considered computationally more 
efficient while iterative reconstruction can improve image 
quality. It should be pointed out that many reconstruction 
algorithms do not fall into these two categories in the strict 
sense. These algorithms can be generally classified as hybrid 
algorithms that leverage advanced signal-processing, image-
processing, and analytical reconstruction approaches. 

The major methods available that provide exact reconstruc-
tion either require infinite number of projection for the recon-
struction; or involve very complex calculation performed mul-
tiple times iteratively. The methods like Fourier slice theorem, 
inverse radon transform, and filtered back projection are the 
existing methods. Radon transform on its own requires infinite 
number of projections to reconstruct the image exactly. Often 
infinite projections are unavailable. 

3 PROPOSED METHOD 
The proposed method of reconstruction tries to overcome 

the shortcomings of the existing methods and introduces a 
unique combination of technologies for exact reconstruction 
with limited data, which the real world scenario most of the 
time. The method is based on a simple fact that geometry of an 
image can be transferred from the continuous geometry of the 
plane image to Cartesian lattice of the corresponding discrete 
image[1]. This geometry transfer enables us to view the image 
as a discrete image with NxN image elements. 
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3.1 Geometry Transfer 
The continuous image f(x,y) is converted to discrete image. It 
is represented as digital image containing a finite number of 
cells called image elements(IE) as given in [1]. It is assumed 
that the original image f (x, y) occupies the square region [0, 
1]×[0, 1] which is divided into N2 image elements by the N × 
N Cartesian lattice, where N > 1. The image elements are 
numbered as I En,m, where n,m = 0 : (N−1), and the image is 
considered in matrix form fn,m. To transfer geometry two co-
ordinate systems are used to represent the same image as 
shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Two co-ordinate system for image: represented in con-
tinuous ( x-y co-ordinate system) as well as discrete (Cartesian 
lattice) co-ordinate system, and line l°1,1(2). 

 
The first co-ordinate system (x, y) is for the image f (x, y) 

on the square [0, 1] × [0, 1]. The second co-ordinate system 
(n,m), where n and m are integers, is for the lattice XN,N  lo-
cated in the square which is used for the discrete image fn,m. 
Parameters x and n run from left to right, and parameters y 
and m run from top to bottom. This is shown in Figure 1 for 
the case N = 4. The first point of the discrete image, f0,0, is in 
the point with coordinates (x, y) = (1/8, 1/8). 

XN,N  is the Cartesian lattice {(p, s); p, s = 0, 1, . . . , (N − 
1)}. Given the frequency-point (p, s) ∈ XN,N , such that 
g.c.d.(p, s) = 1, we consider the  lines l°(t)=l°p,s (t)={(n,m); 
pn+sm = t}, t =0 : (p+s)(N−1),  

on the square lattice XN,N for projections. These lines are 
the arithmetic rays. For example, the ray l°1,1(2) for N = 4 is 
shown in Figure 1. The same lines can be shown on the square 
[0, 1] × [0, 1] by the equation l(t) = l p,s(t) = {(x, y); px + sy = 
t/N + (p + s)/(2N)}, t = 0 : (p + s)(N − 1). They are called the 
geometrical rays in this case to distinguish the discrete and 
continuous cases. The two types of rays denoted by l°(t) and 
l(t) respectively, consider the same set of t, t = 0 : (p + s)(N − 
1). The generator (p, s) defines the slope, ϕ(p, s) = π − 
tan−1(p/s), of these rays. The set of line-integrals {wl(t ); l(t) = 
l p,s(t), t = 0 : (p + s)(N − 1)} is called the (p, s)-projection of the 
image. The angle of this projection is ϕ(p, s) − π/2. Thus for 
geometry transfer the arithmetic rays from the Cartesian lat-
tice corresponding the geometric rays of the projection may be 
considered. 

 
 

3.2 Geometry Transfer 
The tensor representation of the discrete image is obtained 

by the following formula, 
 

                (1) 
 
 
where W = WN = exp(−2π j/N). fp,s,t is component of the 
splitting signal in the image element (p,s) which is explained 
in [1] and [2]. Given (p,s) the components of the splitting-
signal are the sums of the image fn,m along the parallel lines 
on the lattice 
 
      

 
 
The set JN,N of frequency-points (p, s), or generators, of 

the splitting-signals is selected in a way that covers the Carte-
sian lattice XN,N with a minimum number of subsets Tp,s. 
The set JN,N contains 3N/2 generators and can be defined as 
JN,N ={(1,s); s=0 : (N−1)}∪{(2 p,1); p=0 : (N/2−1)} 

The tensor representation of the image is unique and the 
image can be represented through equation (1) which is the 2D 
DFT of the image.  

The tensor transform is redundant; there are many inter-
sections at some frequency points. Paired transform is used to 
represent the image at a unique set of splitting signals. The 
splitting-signals in paired representation carry the spectral 
information about the 2D DFT at N/2k+1 frequency points. 
The paired transform can be represented as follows, 
 
 
                (2) 
 
 
where L = N/2k+1 and m = 0 : (L − 1).The paired transform 
thus defines projection data at unique points in the image.  
 
3.3 Radon Transform 

The 2D Radon transformation is the projection of the image 
intensity along a radial line oriented at a specific angle. Radon 
expresses the fact that reconstructing an image, using projec-
tions obtained by rotational scanning is feasible. The value of a 
2-D function at an arbitrary point is uniquely obtained by the 
integrals along the lines of all directions passing the point. The 
Radon transformation shows the relationship between the 2-D 
object and its projections[3]. 
Suppose a 2D function f(x,y) as shown in figure 2. Integrating 
along the line, whose normal vector is in direction θ, results in 
the function g(s, θ) which is the projection of the 2D image 
f(x,y) on the axis s of direction θ. When s is 0, the function g 
has value g(0, θ) which can be obtained by the integration 
along the line that passes through the origin of (x,y)-
coordinate. 
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Fig. 2. Radon Transform computation 

 
 

The points on the line whose normal vector is in θ  direc-
tion and passes the origin of ),( yx -coordinate satisfy the 
equation: 
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The Radon transform on an image f(x,y) on a set of angles 
computes the projection along those angles. The result is the 
sum of pixel intensities in these directions. Radon transform is 
obtained as follows 

              (3) 

Multiple parallel beam projections of the image from dif-
ferent angles are taken. The radon transform thus gives angu-
lar projection along a given set of angles.   

3.4 Inverse Projections 
The transforms give the projection data of the image. The re-
construction of the image is obtained by computing the in-
verse transform from the projection data obtained. In case of 
2D discrete paired transform, the inverse transform is the sum 
of the image along the arithmetic rays. The inverse 2D DPT is 
obtained from the discrete image as follows 
  
              (4) 

 

Filtered Back Projection is used to obtain the inverse Radon 
transform. In this method the approximation of the image is 
obtained based on the projections in the columns of the projec-
tion data R. As the number of projections increases the accura-
cy of the reconstructed image also increases. The inverse of 
Radon transform is calculated by the following equation, 

( )( ) θρ
π

π
θ dyxsRyxf ∫

−

⋅=
2

2

,),(

   (5) 

The proposed method combines the inverse 2D DPT and 
inverse radon transform. The weighted average of the two 
inverse transforms is taken to combine the individual outputs. 
By combining the two methods the drawbacks of each method  

are removed. The radon transform originally requires infinite 
number of projections for exact and accurate reconstruction. 
But combining the discrete paired transform gives accurate 
reconstruction with fewer numbers of projections. The output 
obtained is an exact reconstruction even though the amount of 
data available is limited which is the real world scenario. The 
proposed method is efficient and accurate. The weakness of 
each method is overcome by the other. Geometry transfer and 
finite number of projections give efficient results even though 
it is not that accurate.  

The original image is given as input to obtain projection 
from the image. Then reconstruction of the image is done us-
ing the projection data. The results of the proposed method 
are shown in the figure 3.  

 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 3. The original image (a) and the reconstructed image (b) 
obtained from the projections. 
 
The image obtained is an exact reconstruction of the original 
image. Reconstruction is done for grayscale images. The input 
image is converted to grayscale image and then projection 
taken. The images are shown in figure 4. 
 
 
 
 
 
 

 
 

 
Fig. 4. The original color image (a) is coverted to grayscale 
image (b) which is then reconstructed (c).  
 

4 EXPERIMENTS AND RESULTS 
The proposed method was tested with noisy image. The 

noise level was varied and the different images tested. The 
reconstruction was exact in all the cases. Exact reconstruction 
is obtained even with noisy projection data. This shows the 
robustness of the proposed method. Gaussian noise is intro-
duced into the input image which is reconstructed. Figure 5 
shows the resulting images from testing the method on Shepp-
Logan phantom image. 

The standard deviation is varied and then the image tested. 
Such an image gives noisy data as input for the generation of 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014                                                                                                    324 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

projections. In real world scenarios the projection data ob-
tained can be noisy and unclear. This method provides exact 
and accurate reconstruction in all the cases. The method is 
efficient and advanced. The method of geometry transfer and  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5. (a) Shepp Logan image (b) the reconstructed image and 
the noisy images with (c) SD = 0.025 (d) SD = 0.5 (e) SD = 0.1 
(f) SD = 0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 6. The original image (a) , reconstructed image (b) and 
reconstruction of images with standard deviation (c) 0.025 (d) 
0.05 (e) 0.1 (f) 0.2 
paired transform accounts for the limited number of projec-
tions required or exact reconstruction. The radon transform 
and discrete paired transform together provide the exact re-

construction. Figure 6 shows multiple squares image which is 
reconstructed without noise and with varying levels of noise. 
The error calculation is shown in Table I. The high SNR and 
PSNR values show the efficiency and robustness of this meth-
od. 
 

 

 

 

 

 
5 CONCLUSION 
The proposed method is an efficient and accurate method of 
image reconstruction. The experiments were performed in 
MATLAB on intel dual core i5 processor. This method pro-
vides exact reconstruction of the image using geometry trans-
fer and 2D DPT along with Radon transform; using a finite 
number of projections. Exact reconstruction is obtained even 
though the number of projections is limited. This is a robust 
method that reconstructs the image exactly and accurately 
even when the projection data is noisy.  
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